Invariant smoothness measures for surfaces

نویسندگان

  • Even Mehlum
  • Christian Tarrou
چکیده

Two novel smoothness measures for surfaces are presented in this paper. The second and third order smoothness are defined as the squared normal curvature and the squared variation in normal curvature integrated over all directions in the tangent plane. Both quantities are truly geometric in the sense that they are invariant with respect to the actual parametrization of the surface. All the same, all formulae are derived in terms of an arbitrary parametrization. In addition to providing a basis for variational surface construction, the second and third order smoothness can also be used for evaluation and assessment of the quality of an existing surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Similarity-Invariant Fairness Measures

After introducing the basic principles behind the similarityinvariant smoothness measures for curves and surfaces, with references to the relevant literature, we discuss the ramifications of scale-invariance in various problems of image processing and analysis, and point out some unanswered questions.

متن کامل

Coordinate finite type invariant surfaces in Sol spaces

In the present paper, we study surfaces invariant under the 1-parameter subgroup in Sol space $rm Sol_3$. Also, we characterize the surfaces in $rm Sol_3$ whose coordinate functions of an immersion of the surface are eigenfunctions of the Laplacian $Delta$ of the surface.

متن کامل

Translation invariant surfaces in the 3-dimensional Heisenberg‎ ‎group

‎In this paper‎, ‎we study translation invariant surfaces in the‎ ‎3-dimensional Heisenberg group $rm Nil_3$‎. ‎In particular‎, ‎we‎ ‎completely classify translation invariant surfaces in $rm Nil_3$‎ ‎whose position vector $x$ satisfies the equation $Delta x = Ax$‎, ‎where $Delta$ is the Laplacian operator of the surface and $A$‎ ‎is a $3 times 3$-real matrix‎.

متن کامل

Regularity of Invariant Densities for 1d-systems with Random Switching

This is a detailed analysis of invariant measures for one-dimensional dynamical systems with random switching. In particular, we prove smoothness of the invariant densities away from critical points and describe the asymptotics of the invariant densities at critical points.

متن کامل

Spline Smoothing on Surfaces

We present a method for estimating functions on topologically and/or geometrically complex surfaces from possibly noisy observations. Our approach is an extension of spline smoothing, using a Þnite element method. The paper has a substantial tutorial component: we start by reviewing smoothness measures for functions deÞned on surfaces, simplicial surfaces and differentiable structures on such s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1998